

Руководство системного программиста

ИСКП.30334-01 32 01

Листов 33

РИЗИВНИЕ

Данный документ является руководством системного программиста для Zenator R Rt (программного обеспечения граничного маршрутизатора на аппаратной платформе с архитектурой x86), далее по тексту – Zenator R Rt или программа.

Документ описывает назначение, структуру, последовательность установки и настройки программы, рекомендации и требования, исполнение которых необходимо для корректного функционирования программы.

Настоящее руководство входит в состав эксплуатационной документации и рассчитано на системного программиста, имеющего навыки работы на персональной электронно-вычислительной машине (ПЭВМ) в операционной системе (ОС) Linux.

СОДЕРЖАНИЕ

	Лист
1. Общие сведения о программе	2
1.1. Назначение программы	2
1.2. Требования к техническим и программным средствам	13
2. Структура программы	15
3. Настройка программы	18
3.1. Общие сведения	18
3.2. Проверка целостности программы	18
3.3. Установка программы	19
4. Проверка программы	26
5. Обновление программного обеспечения	27
6. Дополнительные возможности	28
7. Сообщения системному программисту	29
Перечень принятых сокращений	30

1. ОБЩИЕ СВЕДЕНИЯ О ПРОГРАММЕ

- 1.1. Назначение программы
- 1.1.1. Zenator R Rt выполняет функции программного обеспечения (ПО) граничного маршрутизатора.
- 1.1.2. Zenator R Rt обеспечивает явное задание скорости интерфейса Ethernet (10/100/1000), режима работы (half duplex, full duplex), автосогласование.
- 1.1.3. Zenator R Rt обеспечивает явную настройку максимального размера полезного блока данных (MTU) на сетевых интерфейсах, в том числе и на туннельных.
 - 1.1.4. Zenator R Rt обеспечивает функционирование по протоколу IPv4 и IPv6.
- 1.1.5. Zenator R Rt обеспечивает вывод в интерфейс управления статистики по сетевым интерфейсам (тип/количество ошибок, тип/количество переданных/принятых пакетов).
- 1.1.6. Zenator R Rt имеет возможность назначения и (или) изменения МАС-адреса на своих интерфейсах и подынтерфейсах.
 - 1.1.7. Zenator R Rt обеспечивает поддержку loopback-интерфейсов.
- 1.1.8. Zenator R Rt обеспечивает возможность назначения нескольких IP-адресов на своих интерфейсах и подынтерфейсах.
- 1.1.9. Zenator R Rt обеспечивает статическое и динамическое заполнение таблицы MAC-адресов с помощью протокола разрешения адресов (ARP).
 - 1.1.10. Zenator R Rt имеет возможность функционирования как ARP-proxy.
 - 1.1.11. Zenator R Rt обеспечивает:
- производительность не менее 3000000 пакетов/с (таблицы фильтрации пустые, настройки приоритезации отсутствуют, длина пакета 64 байта);
- производительность не менее 2000000 пакетов/с (при заполненной таблице маршрутизации 1000 маршрутов, заполненной таблице фильтрации 1000 записей и настроенной приоритезации 1000 классов, длина пакета 64 байта).
- 1.1.12. Для локального управления в Zenator R Rt используется выделенный порт RS-232/Ethernet.

- 1.1.13. В Zenator R Rt реализована поддержка групповой передачи данных «multicast routing».
- 1.1.14. Zenator R Rt обеспечивает обработку Jumbo Frames (более 9000 байт) на всех интерфейсах, кроме выделенного порта управления.
 - 1.1.15. В Zenator R Rt обеспечивается статическая маршрутизация пакетов.
- 1.1.16. Zenator R Rt обеспечивает функционирование по протоколам динамической маршрутизации:
 - протокол маршрутизации (RIPv2);
 - протокол маршрутизации для IPv6 (RIPng);
 - протокол динамической маршрутизации (OSPFv3);
 - пограничный межсетевой протокол (BGPv4).

Примечание. Блокировка протоколов динамической маршрутизации обеспечивается программным способом.

- 1.1.17. Zenator R Rt обеспечивает настройку таймеров OSPFv3.
- 1.1.18. Zenator R Rt обеспечивает маршрутизацию на основе политик (policy-routing).
- 1.1.19. Zenator R Rt обеспечивает возможность балансировки нагрузки при наличии нескольких маршрутов с одинаковой метрикой.
- 1.1.20. В Zenator R Rt реализована возможность автоматического переключения на резервный канал по сетевому протоколу, объединяющему группу маршрутизаторов в один виртуальный маршрутизатор (VRRP).
- 1.1.21. Zenator R Rt обеспечивает функционирование по протоколу управления групповой передачей данных (IGMPv3).
- 1.1.22. Zenator R Rt обеспечивает перераспределение маршрутной информации:
 - между протоколами внутренних маршрутизаторов (IGP) маршрутизации;
 - между IGP и BGP;
 - статических маршрутов в протоколы динамической маршрутизации.
- 1.1.23. Zenator R Rt обеспечивает настройку маршрутизации выделенных IP-потоков в туннели PPPoE и PPTP как с клиентской, так и с серверной стороны туннеля.

- 1.1.24. Zenator R Rt обеспечивает функционирование туннелей по протоколам:
- туннельный протокол типа «точка-точка» в стандартной, незащищенной сети (PPTP);
- сетевой протокол канального уровня передачи кадров PPP через Ethernet (PPPoE);
 - протокол туннелирования сетевых пакетов (GRE);
 - протокол туннелирования «IP over IP» (IPIP).
- 1.1.25. Zenator R Rt обеспечивает функционирование туннельного протокола протокола типа «точка-точка» (PPP).
- 1.1.26. Zenator R Rt поддерживает протокол туннелирования второго уровня L2TP.
- 1.1.27. Zenator R Rt обеспечивает функционирование защищенной виртуальной частной сети (VPN) на основе OpenVPN.
 - 1.1.28. Zenator R Rt обеспечивает фильтрацию фрагментированных пакетов.
- 1.1.29. Zenator R Rt обеспечивает фильтрацию на всех интерфейсах (реальных и виртуальных).
- 1.1.30. Zenator R Rt поддерживает правила фильтрации при перераспределении маршрутной информации.
- 1.1.31. Zenator R Rt обеспечивает возможность снятия бита DF на сетевых интерфейсах.
- 1.1.32. Zenator R Rt обеспечивает возможность изменения значения максимального размера полезного блока данных (MSS) в TCP-пакетах для предотвращения Path MTU Discovery Black Hole.
- 1.1.33. Zenator R Rt обеспечивает фильтрацию входящего, исходящего и пересылаемого трафика.
- 1.1.34. Zenator R Rt обеспечивает маркировку и перемаркировку кадров/пакетов в трех битах в теге 802.1Q Ethernet-кадра и поле «ToS» (TOS/DSCP) заголовка IP по следующим критериям:
 - порт (TCP/UDP) отправителя;
 - порт (TCP/UDP) получателя;
 - IP-адрес отправителя;

- IP-адрес получателя;
- МАС-адрес отправителя;
- значение поля «Протокол» заголовка IP;
- значение поля «ToS» (TOS/DSCP) заголовка IP;
- длина пакетов;
- значение трех битов в теге 802.1Q Ethernet-кадра;
- совокупность указанных критериев.
- 1.1.35. Zenator R Rt обеспечивает функционирование клиента сервиса доменных имён (DNS) и кэширующего DNS-сервера.
- 1.1.36. В Zenator R Rt реализована фильтрация IP-пакетов в соответствии с заданными правилами фильтрации на основе:
 - сетевых интерфейсов;
 - порта (TCP/UDP) отправителя;
 - порта (TCP/UDP) получателя;
 - IP-адреса отправителя;
 - ІР-адреса получателя;
 - МАС-адреса отправителя;
 - флагов заголовков сегмента TCP;
 - значения поля «Протокол» заголовка IP;
 - значения поля «ToS» (TOS/DSCP) заголовка IP;
 - состояния соединений;
 - прикладных протоколов с использованием регулярных выражений;
 - мандатных меток, с возможностью преобразования форматов;
 - совокупности указанных критериев.
 - 1.1.37. Zenator R Rt обеспечивает средства расширенной сетевой диагностики.
- 1.1.38. Zenator R Rt обеспечивает запрашивающие хосты IP-адресами и другими конфигурационными параметрами с помощью протокола динамической конфигурации хоста (DHCP).
- 1.1.39. Zenator R Rt обеспечивает возможность автоматического разделения одного физического сетевого интерфейса на несколько логических подынтерфейсов.

- 1.1.40. В Zenator R Rt реализована возможность ограничения числа одновременных соединений с одного IP-адреса.
- 1.1.41. В Zenator R Rt реализована возможность поддержки добавления/удаления мандатных меток безопасности в поле опций IP-заголовка.
 - 1.1.42. Zenator R Rt обеспечивает три базовые концепции трансляции адресов:
 - статическая (SNAT);
 - динамическая (DAT);
- маскарадная преобразование сетевых адресов и портов (NAPT), преобразование сетевых адресов (NAT) Overload, трансляция сетевого адреса в зависимости от TCP/UDP-порта получателя (PAT).
- 1.1.43. Zenator R Rt поддерживает настройку демилитаризованной зоны (DMZ) в сочетании с маршрутизацией и трансляцией адресов NAT или трансляцией портов PAT.
- 1.1.44. Zenator R Rt обеспечивает запрашивающие хосты IP-адресами и другими конфигурационными параметрами посредством DHCPv4.
- 1.1.45. Zenator R Rt обеспечивает распределение IP-адресов на определенный срок.
- 1.1.46. Zenator R Rt обеспечивает распределение IP-адресов с помощью DHCP тремя способами:
 - ручное распределение;
 - автоматическое распределение;
 - динамическое распределение.
- 1.1.47. Zenator R Rt обеспечивает настройку интерфейса автоконфигурированием с помощью DHCP.
- 1.1.48. Zenator R Rt обеспечивает ретрансляцию сообщений DHCP между клиентами и серверами в разных подсетях.
- 1.1.49. Zenator R Rt предоставляет возможность конфигурирования себя с помощью интерфейса командной строки (CLI) следующими способами:
- локально (путем ввода с клавиатуры текстовых команд или через выделенный порт управления);

– удаленно (при подключении по сетевому протоколу прикладного уровня (SSH), простому протоколу сетевого управления (SNMP), с помощью прикладного программного интерфейса передачи состояния представления (REST API) или Telnet).

Примечания:

- 1. Zenator R Rt обеспечивает возможность отключения (блокирования) любого из способов управления.
- 2. Zenator R Rt обеспечивает возможность ограничения доступа к управлению только с доверенных IP-адресов, либо подсетей.
 - 3. SNMP поддерживается в режиме мониторинга.
- 1.1.50. Zenator R Rt обеспечивает проверку корректности основных задаваемых параметров функционирования.
- 1.1.51. Zenator R Rt обеспечивает вывод текстового предупреждения в CLI при некорректно задаваемом параметре.
 - 1.1.52. Zenator R Rt обеспечивает сохранение сконфигурированных профилей.
- 1.1.53. Zenator R Rt имеет возможность вывода информации о текущей загруженности центрального процессора и оперативного запоминающего устройства.
- 1.1.54. Zenator R Rt имеет возможность поддерживать работу сервиса сторожевого таймера («watchdog») для выполнения автоматической перезагрузки устройства в случае прекращения нормального функционирования демона (зависания).
- 1.1.55. Zenator R Rt имеет возможность вывода имеющихся в системе профилей, а также их копирования.
 - 1.1.56. Zenator R Rt обеспечивает применение сохраненных профилей.
- 1.1.57. В Zenator R Rt разработан механизм управления очередями, предусматривающий поддержку методов CBQ, HFSC, FIFO, PQ, TBF, HTB.
- 1.1.58. Zenator R Rt обеспечивает возможность задать полосу пропускания в процентах для определенного администратором типа трафика.
- 1.1.59. Zenator R Rt обеспечивает задание статических IP-адресов своим интерфейсам и подынтерфейсам.

- 1.1.60. Zenator R Rt обеспечивает классификацию и приоритетную обработку пакетов по следующим критериям:
 - порт (TCP/UDP) отправителя;
 - порт (TCP/UDP) получателя;
 - IP-адрес отправителя;
 - IP-адрес получателя;
 - МАС-адрес отправителя;
 - значение поля «Протокол» заголовка IP;
 - значение поля «ToS» (TOS/DSCP) заголовка IP;
 - длина пакетов;
 - значение трех битов в теге 802.1Q Ethernet-кадра;
 - совокупность указанных критериев.
- 1.1.61. Zenator R Rt обеспечивает функционирование протокола обнаружения соседей (NDP).
- 1.1.62. В Zenator R Rt реализовано предупреждение перегрузок с поддержкой механизмов RED, ECN, GRED.
- 1.1.63. Zenator R Rt обеспечивает функционирование протокола передачи точного времени NTPv4 (Network Time Protocol) клиента/сервера с возможностью явно задать часовой пояс.
- 1.1.64. Zenator R Rt обеспечивает функционирование виртуальной локальной сети VLAN согласно стандарту Института Инженеров Электротехники и Электроники (IEEE) 802.1Q.
- 1.1.65. Zenator R Rt обеспечивает добавление и снятие тегов VLAN IEEE 802.1Q, VLAN QinQ IEEE 802.1ad на интерфейсах, работающих в режиме коммутатора.
- 1.1.66. Zenator R Rt обеспечивает возможность агрегации сетевых интерфейсов в группу IEEE 802.3ad
- 1.1.67. Zenator R Rt обеспечивает функционирование протокола оповещения канального уровня (LLDP).
- 1.1.68. Zenator R Rt обеспечивает перенаправление (зеркалирование) трафика.

- 1.1.69. Zenator R Rt обеспечивает автоматическое создание логических подынтерфейсов сетевого уровня для каждого тега VLAN 802.1Q или совокупности верхнего и нижнего тегов VLAN QinQ, с возможностью привязки их к физическим портам.
- 1.1.70. Zenator R Rt обеспечивает возможность программного объединения портов Ethernet по технологии Bridge.
- 1.1.71. Zenator R Rt обеспечивает создание и функционирование через шифрованный IP-туннель IPSec.
 - 1.1.72. Zenator R Rt обеспечивает преобразование сетевых адресов NAT.
- 1.1.73. В Zenator R Rt реализована система ролевого доступа со следующими пользователями:
 - администратор сети (с функцией настройки сетевых интерфейсов и служб);
- администратор безопасности (с функцией настройки туннелей
 (VPN-соединений) и правил межсетевого экранирования);
 - администратор аудита (с функцией доступа на чтение).
 - 1.1.74. Zenator R Rt обеспечивает ведение следующих журналов регистрации:
 - журнал «ids» (журнал системы обнаружения вторжений);
- журнал «auth» (журнал информации о фактах идентификации, аутентификации);
- журнал «ipfilter» (журнал событий срабатывания правил межсетевого экранирования);
- журнал «commands» (команды администратора Zenator R Rt, вводимые с консоли управления);
 - журнал «daemon» (внутренний журнал агента управления Zenator R Rt);
 - журнал «testing» (информация о самотестировании);
- журнал «syslog» (информация от ядра операционной системы и системных утилит);
- журнал «router» (информация о работе протоколов динамической маршрутизации).
 - 1.1.75. В Zenator R Rt обеспечивается регистрация следующих событий:
 - загрузка, инициализация системы и её остановка;

- вход/выход пользователей в систему/из системы, с фиксацией ошибок авторизации;
 - результат фильтрации входящих/исходящих пакетов.
 - 1.1.76. В Zenator R Rt при регистрации событий фиксируются:
 - дата и время регистрируемого события;
- IP-адрес источника и IP-адрес получателя (при фильтрации), включая порты протоколов TCP, UDP.
- 1.1.77. В Zenator R Rt осуществляется автоматический контроль целостности ПО.
- 1.1.78. Zenator R Rt поддерживает протокол аутентификации, авторизации, сбора сведений об использованных ресурсах (RADIUS).
- 1.1.79. Zenator R Rt поддерживает протокол экспорта информации по IP-потоку (IPFIX).
- 1.1.80. Zenator R Rt поддерживает миграцию базовых настроек между версиями ПО.
- 1.1.81. Zenator R Rt поддерживает возможность программного отключения неиспользуемых портов и сервисов.
- 1.1.82. Zenator R Rt поддерживает передачу данных о событиях на удаленный сервер (syslog, SNMP trap).
- 1.1.83. Zenator R Rt обеспечивает программное определение позиций интерфейсов.
 - 1.1.84. Zenator R Rt обеспечивает возможность обновления ПО.
- 1.1.85. Zenator R Rt обладает функциями самотестирования (проверки работоспособности).
- 1.1.86. Zenator R Rt обеспечивает проведение анализа трафика и применение необходимых сигнатур для корректного и точного обнаружения уязвимостей.
- 1.1.87. Zenator R Rt обеспечивает выявление признаков компьютерных атак, распределенных по нескольким сетевым пакетам.
- 1.1.88. Zenator R Rt обеспечивает поддержку статистического метода выявления аномалий сетевого трафика типа DoS-flooding.

- ИСКП.30334-01 32 01
- 1.1.89. Zenator R Rt обеспечивает возможность эвристического метода выявления сетевых атак, таких как «port scans», «host sweeps».
- 1.1.90. Zenator R Rt обеспечивает выявление в сетевом трафике нестандартных и фрагментированных пакетов формируемых протоколом межсетевых управляющих сообщений (ICMP).
- 1.1.91. Zenator R Rt обеспечивает функционирование механизмов «Flood protection» для обнаружения атак типа IP Flood (SYN, ICMP, UDP).
- 1.1.92. Zenator R Rt обеспечивает пассивный мониторинг протокола DNS в сетевом трафике с целью определения скомпрометированных доменов и блокирования запросов на URL-адреса.
- 1.1.93. Zenator R Rt обеспечивает обнаружение и блокировку атак типа дефрагментация IP, «пересборка» TCP, а также блокировку некорректных сетевых пакетов.
- 1.1.94. Zenator R Rt обеспечивает возможность добавления/редактирования сигнатур атак и эвристических правил выявления перспективных атак.
- 1.1.95. Zenator R Rt обеспечивает возможность удаленного обновления баз сигнатур атак и эвристических правил.
- 1.1.96. Zenator R Rt обеспечивает поддержку двойного стека протоколов IPv4 и IPv6.
- 1.1.97. В Zenator R Rt порты Ethernet, объединенные по технологии Bridge, должны иметь общий IP-адрес.
- 1.1.98. Zenator R Rt обеспечивает вывод в интерфейс управления информации об источниках маршрутов в таблице маршрутизации.
- 1.1.99. Zenator R Rt обеспечивает возможность просмотра через интерфейс управления таблицы принятых и анонсируемых маршрутов BGPv4.
 - 1.2. Требования к техническим и программным средствам
- 1.2.1. Zenator R Rt функционирует на аппаратной платформе (АП) «Сервер MS-3040» ЦРМП.466219.001 или на АП со следующими характеристиками:
 - 1) процессор с архитектурой х86;
 - 2) оперативная память не менее 4 Гбайт;

ИСКП.30334-01 32 01

- 3) постоянное запоминающее устройство не менее 16 Гбайт;
- 4) интерфейс USB не менее одного;
- 5) интерфейс стандарта RS-232 не менее одного;
- 6) интерфейс Ethernet 10/100/1000BaseT, соответствующий требованиям IEEE 802.3u, 802.3ab – не менее двух;
 - 7) интерфейс Ethernet 1000Base-X не менее двух;
 - 8) интерфейсный модуль SFP не менее двух с характеристиками:
 - стандарт Ethernet 1000Base-LX;
 - тип разъема LC;
 - тип волокна одномодовое;
 - длина волны не менее 1310 нанометра;
 - скорость передачи данных до 1,25 Гбайт/с;
 - рабочая дистанция не менее 2000 м;
 - количество волокон не менее двух;
 - 9) интерфейсный модуль SFP с характеристиками:
 - стандарт Ethernet 1000Base-T;
 - тип разъема RJ-45;
 - тип кабеля UTP-5;
 - скорость передачи данных до 1,25 Гбайт/с;
 - рабочая дистанция не менее 100 м.

Примечания:

- 1. Порт RS-232 необходим для технологического управления изделием в отсутствии подключаемых клавиатуры и монитора. На некоторых аппаратных платформах он может отсутствовать.
- 2. Количество интерфейсов Ethernet и интерфейсных модулей SFP определяется договором поставки. Допускается применение интерфейсов SFP+.
- 1.2.2. В зависимости от версии ПО и комплектации оборудования функциональные возможности программы могут отличаться.

2. СТРУКТУРА ПРОГРАММЫ

- 2.1. В Zenator R Rt реализован принцип модульного построения ПО, когда каждый отдельный модуль отвечает за решение узкоспециализированной задачи.
- 2.2. Взаимодействие между модулями организовано на базе прямой адресации объектов в пределах одной подсистемы или же с использованием буферизированных средств взаимодействия (файлы, сокеты и сигналы).

Структурная схема программы представлена на рис. 1.

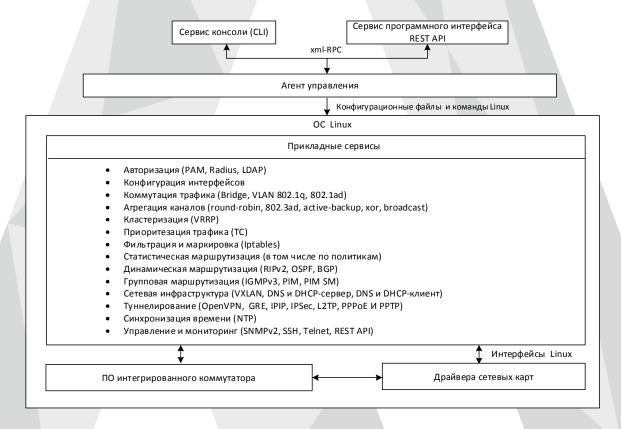


Рис. 1

2.3. Поступающая из контроллеров Ethernet информация обрабатывается в соответствии с семиуровневой моделью взаимодействия открытых систем.

На каждом уровне производится проверка корректности параметров данных этого уровня.

На канальном и сетевом уровнях производится фильтрация информации в соответствии с установленными правилами и выбор порта, через который будет производиться передача информации.

На транспортном уровне осуществляется обмен данными между программными объектами и сетевым уровнем через транспортные точки доступа.

- 2.4. Программные объекты, осуществляющие функции управления изделием, анализируют принимаемую информацию, выполняют управляющие действия в соответствии с алгоритмом. В том случае, если принятая информация является командой, формируется ответ, отправляемый инициатору команд через транспортные точки доступа.
- 2.5. Агент управления это самостоятельная программная система, имеющая возможность принимать воздействие с сервисов консоли и REST API, она определяет свою реакцию на это воздействие и формирует ответное действие. Эта программа обладает возможностью изменения своего поведения с течением времени в зависимости от накопленной информации и извлеченных из нее знаний.

Агент управления обеспечивает передачу управляющих воздействий, разграничение прав доступа, а также ведение журналов.

Агент управления взаимодействует с прикладными сервисами, сервисом обработки и передачи трафика, а также через протокол xml-RPC с сервисом консоли и сервисом REST API.

Запрос, переданный пользователем через сервис консоли и сервис REST API, передается агенту управления через протокол xml-RPC. Посредством агента управления запрос перенаправляется соответствующему сервису. Обработанный сервисом запрос через агента управления выдается в консоль или REST API.

2.6. Сервис REST API — программный интерфейс взаимодействия, предоставляющий доступ к изделию с помощью HTTP-запросов. Является точкой сопряжения со всеми внешними по отношению к изделию системами управления. HTTP-запросы в своем теле отражают функционал изделия, к которому применяется управляющее воздействие.

В ответ на управляющее воздействие REST API возвращает документ в формате json, информирующий об успешности воздействия и корректности запроса.

2.7. Сервис консоли CLI – это текстовый интерфейс общения с ОС. Интерфейс командной строки обеспечивает взаимодействие с агентом управления с помощью XML-файлов.

2.8. Прикладные сервисы взаимодействуют с агентом управления с помощью конфигурационных файлов и команд Linux.

Прикладные сервисы включают в себя следующие сервисы:

- авторизация (PAM, RADIUS, LDAP);
- конфигурация интерфейсов;
- коммутация трафика (Bridge, VLAN 802.1q, 802.1ad);
- агрегация каналов (round-robin, 802.3ad, active-backup, xor, broadcast);
- кластеризация (VRRP);
- приоритезация трафика (TC);
- фильтрация и маркировка (Iptables);
- статическая маршрутизация (в том числе по политикам);
- динамическая маршрутизация (RIPv2, OSPF, BGP);
- групповая маршрутизация (IGMPv3, PIM, PIM SM);
- сетевая инфраструктура (VXLAN, DNS и DHCP клиент и сервер);
- туннелирование (OpenVPN, GRE, IPIP, IPSec, L2TP, PPPoE, PPTP);
- синхронизация времени (NTP);
- управление и мониторинг (SNMPv2, SSH, Telnet, REST API).
- 2.9. Прикладные сервисы взаимодействуют с ПО интегрированного коммутатора и высокопроизводительными драйверами сетевых карт с помощью API.
- 2.10. Высокопроизводительные драйвера сетевых карт взаимодействуют непосредственно с АП.

3. НАСТРОЙКА ПРОГРАММЫ

- 3.1. Общие сведения
- 3.1.1. Для установки программы на АП к ней должны быть подключены следующие устройства:
 - технологический монитор;
 - клавиатура.

Примечание. Если АП не имеет возможности подключения монитора и клавиатуры, то необходимо соединить ее с технологической ПЭВМ кабелем консольного управления (через порт RS-232).

- 3.2. Проверка целостности программы
- 3.2.1. Непосредственно перед установкой должна быть проверена контрольная сумма инсталляционного компакт-диска ИСКП.30334-01.

Примечание. Проверка контрольной суммы осуществляется на ПЭВМ, на которую установлена ОС «Astra Linux Special Edition» версии 1.6.

- 3.2.2. Для проверки контрольной суммы дистрибутива необходимо выполнить следующую последовательность действий:
- войти в ОС под учетной записью суперпользователя (учетная запись «root») и дождаться приглашения ввода консоли;
 - вставить компакт-диск ИСКП.30334-01 в дисковод DVD-ROM;
 - смонтировать компакт-диск с помощью команды mount /media/cdrom
- перейти в каталог точки монтирования компакт-диска (каталог с содержимым компакт-диска) с помощью команды

cd /media/cdrom

Примечание. Каталог точки монтирования компакт-диска зависит от настроек рабочего места и может отличаться;

– в командной строке набрать команду для подсчета контрольной суммы find . -type f -exec md5sum {} \; | sort -k2 | md5sum

- дождаться окончания выполнения введенной команды и получить на мониторе подсчитанную контрольную сумму;
 - размонтировать компакт-диск с помощью команды cd /; umount /media/cdrom
 - извлечь компакт-диск ИСКП.30334-01 из дисковода DVD-ROM.
- 3.2.3. Zenator R Rt считается готовым к установке, если контрольная сумма, отображенная на мониторе ПЭВМ для компакт-диска ИСКП.30334-01, совпала с контрольной суммой на маркировке этого диска.

Примечание. При несовпадении контрольных сумм запрещается производить дальнейшие действия по установке программы.

- 3.3. Установка программы
- 3.3.1. Если к АП удалось подключить технологический монитор, клавиатуру и дисковод DVD-ROM, то необходимо выполнить последовательность действий, начиная с 3.3.5.

Далее описывается последовательность установки программы с технологической ПЭВМ, соединенной с портом СОМ1 (ttyS0) АП кабелем консольного управления.

- 3.3.2. Включить технологическую ПЭВМ с установленной ОС, имеющей в своем составе программу «minicom».
- 3.3.3. Ввести логин и пароль, заданные при установке ОС на технологическую ПЭВМ.
 - 3.3.4. На технологической ПЭВМ выполнить следующие действия:
 - 1) запустить «minicom» с помощью команды minicom -s
 - 2) в открывшемся окне «Конфигурация» выполнить следующие действия:
 - выбрать пункт «Настройка последовательного порта» и нажать «Enter»;
- в появившемся окне выбрать последовательный порт технологической ПЭВМ, к которому подключена АП;
- убедиться (при необходимости выставить) в том, что для параметра «Скорость/Четность/Биты» выставлено значение «115200 8N1»;

- для параметров «Аппаратное управление потоком» и «Программное управление потоком» выставить значение «нет» и нажать «Enter»;
 - выбрать пункт «Сохранить настройки как df1» и нажать «Enter»;
 - выбрать пункт «Выход из Minicom» и нажать «Enter»;
 - 3) в консоли включить «minicom» с помощью команды minicom -D /dev/ttyUSB0

где ttyUSB0 – имя и номер последовательного порта, к которому подключена АП.

- 3.3.5. Подключить внешний дисковод DVD-ROM с вставленным компакт-диском ИСКП.30334-01 к АП.
 - 3.3.6. Запустить АП по питанию.
- 3.3.7. В зависимости от возможностей АП дальнейшая установка программы производится либо с консоли технологической ПЭВМ с включённым «minicom», либо напрямую с АП. Для установки необходимо выполнить следующие действия:
 - 1) несколько раз нажать кнопку «Delete»;
- 2) в открывшемся меню выбрать пункт «Boot», для поля «Boot Option #1» нажать «Enter», а затем выбрать подключённый внешний дисковод DVD-ROM (рис. 2);

```
Aptio Setup Utility - Copyright (C) 2013 American Megatrends, Inc.
 Main Advanced Chipset Boot Security Save & Exit Server Mgmt
Boot Configuration
                                                       |Sets the system boot
Setup Prompt Timeout
Bootup NumLock State
                                                       lorder
                         [0n]
Quiet Boot
                          [Disabled]
Fast Boot
                          [Disabled]
Boot Option Priorities
Boot Option #1 [ASUS SDRW-08D2S-U B901]
                                                      |><: Select Screen
|^v: Select Item</pre>
Boot Option #2
                         [P2: ST2000LM007-1R8...]
                                                       Enter: Select
Hard Drive BBS Priorities
CD/DVD ROM Drive BBS Priorities
                                                       +/-: Change Opt.
CSM16 Parameters
                                                       |F1: General Help
                                                       |F2: Previous Values
CSM parameters
                                                       |F3: Optimized Defaults
                                                       |F4: Save & Exit
                                                       |ESC: Exit
     Version 2.16.1240. Copyright (C) 2013 American Megatrends, Inc.
```

Рис. 2

3) нажать клавишу «F4» и согласиться с сохранением изменений, выбрав «Yes» (рис. 3) и нажав клавишу «Enter»;

4) в консоли ввести команду serial

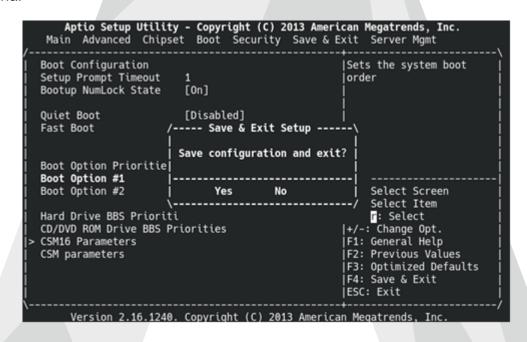


Рис. 3

- 3.3.8. АП перейдёт в режим установки ПО.
- 3.3.9. В процессе установки ПО при появлении меню «Разметка дисков»/ «Partition disks» необходимо выполнить следующие действия:
- 1) выбрать желаемый вариант разметки диска для поля «Метод разметки:»/ «Partitioning method:» (рис. 4) и нажать «Enter»;


```
x The installer can guide you through partitioning a disk (using
                                                                  x
 x different standard schemes) or, if you prefer, you can do it x manually. With guided partitioning you will still have a chance later
 x to review and customise the results.
                                                                  х
 x If you choose guided partitioning for an entire disk, you will next
  be asked which disk should be used.
 x Partitioning method:
          Guided - use entire disk
          Guided - use entire disk and set up LVM
          Guided - use entire disk and set up encrypted LVM
 X
          Manual
      <Go Back>
 Х
 <Tab> moves; <Space> selects; <Enter> activates buttons
```

Рис. 4

Примечание. Рекомендуемый метод разметки – «Авто – использовать весь диск»/«Guided – use entire disk»;

2) в следующем окне для поля «Выберите диск для разметки:»/«Select disks to partition:» (рис. 5) выбрать диск «SCSI3 (0,0,0) (sda)» и нажать «Enter»;

Рис. 5

3) выбрать желаемую схему разметки для поля «Схема разметки:»/ «Partitioning scheme» (рис. 6) и нажать «Enter»;

Рис. 6

Примечание. Рекомендуемый метод разметки – «Все файлы в одном разделе (рекомендуемая новичкам)»/«All files in one partition (recommended for new users)»;

4) в открывшемся окне убедиться в корректности выставленных ранее параметров, выбрать пункт «Закончить разметку и записать изменения на диск»/ «Finish partitioning and write changes to disk» (рис. 7) и нажать «Enter»;


```
(1*installer) 2 shell 3 shell 4-log
                                                         ][ Mar 11 12:32 ]
 This is an overview of your currently configured partitions and mount
 x points. Select a partition to modify its settings (file system, mount x point, etc.), a free space to create partitions, or a device to
   initialize its partition table.
           Configure encrypted volumes
           Configure iSCSI volumes
                                                         а
           SCSI3 (0,0,0) (sda) - 2.0 TB ATA ST2000LM007-1R81
                #1 primary 2.0 TB F ext4
#5 logical 1.0 GB F swap
                                                         а
                                                swap
                                                         а
                                                         а
           Undo changes to partitions
                                                         0
           Finish partitioning and write changes to disk
       <Go Back>
 <F1> for help; <Tab> moves; <Space> selects; <Enter> activates buttons
```

Рис. 7

5) согласиться с записью изменений на диск, выбрав «Да»/«Yes» (рис. 8) и нажать «Enter».

Рис. 8

3.3.10. Наблюдать процесс установки ПО.

3.3.11. После установки ПО произойдёт автоматическая перезагрузка АП, после чего на экране ПЭВМ появятся строки

Zenator R Rt ИСКП.30334-01

zenator login:

- 3.3.12. Отключить внешний дисковод DVD-ROM с вставленным компакт-диском ИСКП.30334-01 от АП.
- 3.3.13. Дальнейшую настройку программы необходимо производить под учетными записями «admin» или «admsec» (пароль «по умолчанию» без кавычек «12345678і.») либо напрямую с АП, либо с консоли ПЭВМ после включения «minicom» с помощью команды

minicom -D /dev/ttyUSB0

где ttyUSB0 – имя и номер последовательного порта, к которому подключена АП.

3.3.14. Последовательность настройки программы и описание команд, используемых в процессе настройки и выполнения программы, приведены в руководстве оператора ИСКП.30334-01 34 01 и в приложении к нему ИСКП.30334-01 34 01-1.

4. ПРОВЕРКА ПРОГРАММЫ

- 4.1. При включении АП автоматически запускается Zenator R Rt и начинается процедура самотестирования, при этом осуществляются следующие проверки:
 - целостности файловой системы;
 - целостности ПО;
 - целостности аппаратной конфигурации.
- 4.2. Для дальнейшей проверки программы необходимо выполнить процедуру авторизации.

В поле «zenator login: » необходимо ввести имя пользователя «admsec» и нажать клавишу «Enter».

В поле «Password: » необходимо ввести пароль «12345678і.» и нажать клавишу «Enter».

Примечания:

- 1. Пароль на экране не отображается. Данный пароль устанавливается «по умолчанию» в процессе инсталляции программы.
 - 2. При первом запуске рекомендуется сменить пароль на более безопасный.
 - 3. Длина задаваемого пароля не должна превышать 32 символа.

После входа в систему на экране появятся следующие сообщения:

- 1) «Welcome <name>!» приглашение входа в систему с учетной записью «name» («name» имя пользователя);
 - 2) «zenator>» строка приглашения к вводу команд.
- 4.3. Для проверки состояния сетевых интерфейсов необходимо в строке приглашения ввести команду «show interfaces». Если программа функционирует корректно, будет выведен перечень всех физических сетевых интерфейсов системы.

5. ОБНОВЛЕНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

5.1. После запуска Zenator R Rt необходимо произвести процедуру авторизации.

В поле «zenator login: » необходимо ввести имя пользователя «admsec» и нажать клавишу «Enter».

В поле «Password: » необходимо ввести пароль «12345678і.» и нажать клавишу «Enter».

Примечание. Пароль на экране не отображается.

После входа в систему на экране появится сообщение «Welcome admsec!» и строка приглашения «zenator>».

5.2. Далее необходимо задать сервер обновления, выполнив команду system update-server <address>

где <address> - адрес сервера обновлений.

Адрес сервера обновлений можно получить, обратившись в службу технической поддержки АО «НИИ «Масштаб».

5.3. После этого необходимо получить список обновлений Zenator R Rt, выполнив команду

system update

5.4. Обновление общесистемного ПО выполняется командой system upgrade

6. ДОПОЛНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ

- 6.1. Для вывода текущего времени и даты используется команда show system clock
- 6.2. Для установки даты и времени используется команда system clock < YYYYMMDDhhmmss>
- где YYYYMMDD год, месяц, день соответственно; hhmmss часы, минуты, секунды соответственно.

Примечание. Запрещается устанавливать дату и время более ранние, чем указано в выводе команды «show system clock».

7. СООБЩЕНИЯ СИСТЕМНОМУ ПРОГРАММИСТУ

7.1. Сообщения системному программисту, выдаваемые на экран во время установки, настройки и проверки программы, приведены в разделах 3, 4 и 5 настоящего документа.

Действия системного программиста должны осуществляться в соответствии с подсказками, выдаваемыми в процессе инсталляции и настройки программы на экран монитора.

Перечень принятых сокращений

ΑП аппаратная платформа OC операционная система ПО - программное обеспечение ПЭВМ - персональная электронно-вычислительная машина API Application **Programming** Interface (программный интерфейс приложения) - Address Resolution Protocol (протокол разрешения адресов) **ARP BGP** Border Gateway Protocol (пограничный межсетевой протокол) CLI Command Line Interface (интерфейс командной строки) DAT Dynamic Address Translation (динамическое преобразование адресов) **DHCP** Dynamic Host Configuration Protocol (протокол динамической конфигурации хоста) DMZ демилитаризованная зона DNS Domain Name System (система доменных имен) **GRE** Generic Routing Encapsulation («общая инкапсуляция маршрутов» протокол туннелирования сетевых пакетов) **IEEE** - Institute of Electrical and Electronics Engineers (Институт Инженеров Электротехники и Электроники) **ICMP** - Internet Control Message Protocol (протокол межсетевых управляющих сообщений) **IGMP** - Internet Group Management Protocol (протокол управления групповой передачей данных) **IGP** - Interior Gateway Protocol (протокол внутренних маршрутизаторов) **IPFIX** Internet Protocol Flow Information Export (протокол экспорта информации по ІР-потоку) **IPIP** IP over IP («IP поверх IP» – протокол туннелирования) **LLDP** Link Layer Discovery Protocol (протокол оповещения канального уровня) **MSS** – Maximum Segment Size (максимальный размер полезного блока

данных)

MTU	– Maximum Transmission Unit (максимальный размер полезного блока						
	данных)						
NAPT	- Network Address Port Translation (преобразование сетевых адресов						
	портов)						
NAT	- Network Address Translation (преобразование сетевых адресов)						
NDP	– Neighbor Discovery Protocol (протокол обнаружения соседей)						
NTP	– Network Time Protocol (протокол передачи точного времени)						
OSPF	– Open Shortest Path First (протокол динамической маршрутизации)						
PAT	- Port Address Translation (технология трансляции сетевого адреса в						
	зависимости от TCP/UDP-порта получателя)						
PPP	– Point-to-Point Protocol (туннельный протокол типа						
	«точка-точка»)						
PPPoE	– Point-to-Point Protocol Over Ethernet (сетевой протокол канального						
	уровня передачи кадров PPP через Ethernet)						
PPTP	– Point-to-Point Tunneling Protocol (туннельный протокол типа						
	«точка-точка» в стандартной, незащищенной сети)						
RADIUS	- Remote Authentication in Dial-In User Service (протокол аутентификации,						
	авторизации, сбора сведений об использованных ресурсах)						
REST API	– прикладной программный интерфейс передачи состояния						
	представления						
RIP	– Routing Information Protocol (протокол маршрутизации)						
RIPng	– Routing Information Protocol Next Generation (протокол маршрутизации						
	для IPv6)						
SNAT	– Static Network Address Translation (статический NAT)						
SNMP	- Simple Network Management Protocol (простой протокол сетевого						
	управления)						
SSH	– Secure Shell (сетевой протокол прикладного уровня)						
VLAN	– Virtual Local Area Network (виртуальная локальная сеть)						
	, , ,						
VPN	– Virtual Private Network (виртуальная частная сеть)						

VRRP – Virtual Router Redundancy Protocol (сетевой протокол, объединяющий группу маршрутизаторов в один виртуальный маршрутизатор)

		Лі	ист регист	рации изм	енений			
Изм.	мера лист заме- ненных	гов (страні новых	иц) анну- лиро- ванных	Всего листов (стра- ниц) в докум.	Номер доку- мента	Входящий номер сопроводи- тельного докум. и дата	Подп.	Да- та
					N.			